R/omXplore_pca.R
, R/plot_pca.R
ds-pca.Rd
This method plots a bar plot which represents the distribution of the number of missing values (NA) per lines (ie proteins).
wrapper_pca()
plotPCA_Eigen_hc()
: plots the eigen values of PCA with the highcharts
library
plotPCA_Eigen()
: plots the eigen values of PCA
plotPCA_Var()
plotPCA_Ind()
A character(1)
which is the id of the shiny module.
An instance of the class MultiAssayExperiment
.
An integer which is the index of the assay in the param obj
A data.frame() of quantitative data
A vector with the name of samples
A boolean indicating whether to scale the data or not
The result of the function FactoMineR::PCA()
See the parameter 'axes' of the function
factoextra::fviz_pca_var()
NA
NA
A shiny app
The result of the function FactoMineR::PCA()
A plot
A plot
A plot
A plot
if (FALSE) { # \dontrun{
data(vdata)
# Replace missing values for the example
sel <- is.na(SummarizedExperiment::assay(vdata, 1))
SummarizedExperiment::assay(vdata[[1]])[sel] <- 0
omXplore_pca(vdata, 1)
} # }
data(vdata)
obj <- vdata[[1]]
res.pca <- wrapper_pca(SummarizedExperiment::assay(obj), get_group(obj))
plotPCA_Eigen(res.pca)
plotPCA_Var(res.pca)
plotPCA_Eigen_hc(res.pca)
plotPCA_Ind(res.pca)