Process a PCA, using nipals or FactoMineR, on a quantitative dataset.
This method plots a bar plot which represents the distribution of the number of missing values (NA) per lines (ie proteins).
wrapper_pca()
plotPCA_Eigen_hc()
: plots the eigen values of PCA with the highcharts
library
plotPCA_Eigen()
: plots the eigen values of PCA
plotPCA_Var()
plotPCA_Ind()
my_PCA(
X,
scale.unit = TRUE,
ncp = min(12, nrow(X) - 1, ncol(X)),
ind.sup = NULL,
quanti.sup = NULL,
quali.sup = NULL,
row.w = NULL,
col.w = NULL,
graph = FALSE,
axes = c(1, 2),
method = "FM",
gramschmidt = TRUE
)
omXplore_pca_ui(id)
omXplore_pca_server(id, obj, i)
omXplore_pca(obj, i)
wrapper_pca(
qdata,
group,
var.scaling = TRUE,
ncp = NULL,
method = NULL,
gramschmidt = TRUE
)
plotPCA_Eigen(res.pca)
plotPCA_Var(res.pca, chosen.axes = c(1, 2))
plotPCA_Ind(res.pca, chosen.axes = c(1, 2))
plotPCA_Eigen_hc(res.pca)
a data.frame() of quantitative data
a string corresponding to the package to use for PCA (if no NA
, default is "FM" for FactoMineR)
A boolean indicating whether to use Gram-Schmidt orthogonalization or not.
A character(1)
which is the id of the shiny module.
An instance of the class MultiAssayExperiment
.
An integer which is the index of the assay in the param obj
A data.frame() of quantitative data
A vector with the name of samples
A boolean indicating whether to scale the data or not
The result of the function FactoMineR::PCA()
See the parameter 'axes' of the function
factoextra::fviz_pca_var()
res.pca
a "PCA" "list"
object
NA
NA
A shiny app
The result of the function FactoMineR::PCA()
A plot
A plot
A plot
A plot
data(vdata)
obj <- vdata[[1]]
res.pca <- my_PCA(SummarizedExperiment::assay(obj), method = "FM")
#> [1] "FM"
plotPCA_Eigen(res.pca)
plotPCA_Var(res.pca)
plotPCA_Eigen_hc(res.pca)
plotPCA_Ind(res.pca)
if (FALSE) { # \dontrun{
data(vdata)
library(shinyWidgets)
library(dplyr)
# Replace missing values for the example
sel <- is.na(SummarizedExperiment::assay(vdata, 1))
SummarizedExperiment::assay(vdata[[1]])[sel] <- 0
omXplore_pca(vdata, 1)
shiny::runApp(omXplore_pca(vdata, 1))
} # }
data(vdata)
obj <- vdata[[1]]
res.pca <- wrapper_pca(SummarizedExperiment::assay(obj), get_group(obj))
#> NULL
#> Error in if (method == "NIPALS") X.init <- X: argument is of length zero
plotPCA_Eigen(res.pca)
plotPCA_Var(res.pca)
plotPCA_Eigen_hc(res.pca)
plotPCA_Ind(res.pca)